

Moving medicine forward.

Outlier Analysis for Relative Potency Assays Using SoftMax Pro Function for Rosner Extreme Studentized Deviate Test

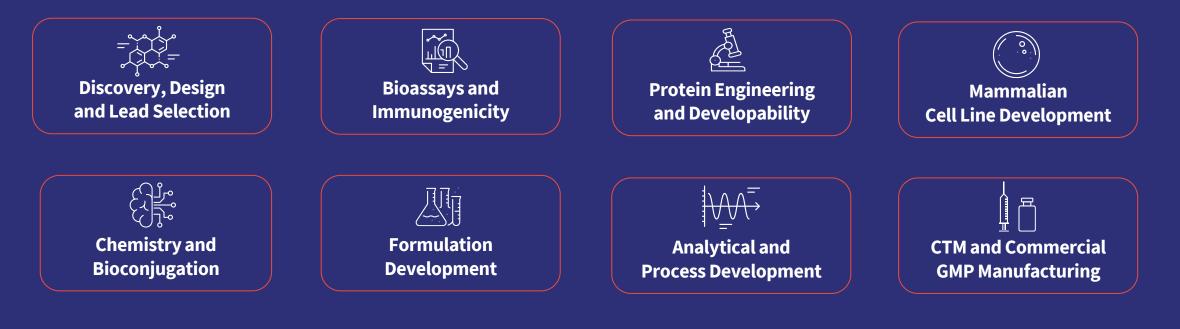
Alena Nikolskaya, PhD

12 March 2024 www.abzena.com

ABZENA

Who we are

Abzena is the leading, end-to-end bioconjugate and complex biologics CDMO+CRO, focused on rapidly moving medicines forward to patients in need.


How we support our customers

Capabilities spanning from discovery through commercial launch

Experts in developing:

> mABs | Fusion Proteins | ADCs | Bioconjugates | Biologics | Oligonucleotide Conjugates | Vaccines | Radioconjugates

Fully integrated or tailored services to meet customers needs:

Outlier Analysis using SoftMax Pro software

Our outlier analysis approach for dose-response curves in relative potency assays utilizes customized SoftMax Pro¹ data acquisition and analysis software templates to perform all calculations, processing and reporting without any data transfer to another statistical program.

Outliers are determined based on the residuals from independent curve fit using SoftMax Pro function for Rosner extreme studentized deviate test: "ESD Mark Outliers (data, outliers, significance)".

Distributions of the residuals are tested for normality with and without identified outliers using SoftMax Pro function for Shapiro-Wilk Royston probability test: "ShapiroWilkRoystonProbability(data)". The rationality of outlier exclusion is based on the comparisons of the results of normality tests using distribution of the residuals of the standard curve without outliers typical for relative potency assay.

¹SoftMax Pro software developed by Molecular Devices

About SoftMax Pro

Example of SoftMax Pro template

Reference, Samples and Control tested as 8-point (7 non-zero) dose-response curves (DRC), in triplicates, 3-fold serial dilutions using 96-well plate format

Four-parameter logistic (4-PL) regression model was used for dose-response curve fitting:

- Independent for Outlier analysis and assessment of parallelism with Reference curve
- Global for paired constrained fits of each Sample and Control with Reference

Negative Control (NC) 0-concentration, used to fix lower asymptotes for all curves

ESD Mark Outliers Settings: Max Outliers per curve = 5, Significance = 0.05

	1	2	3	4	5	6	7	8	9	10	11	12
Α	Refere	Sampl	Sample	Control	Refere	Sampl	Sample	Control	Refere	Sampl	Sample	Control
в	1.667	1.667	1.667	1.667	1.667	1.667	1.667	1.667	1.667	1.667	1.667	1.667
с	0.556	0.556	0.556	0.556	0.556	0.556	0.556	0.556	0.556	0.556	0.556	0.556
D	0.185	0.185	0.185	0.185	0.185	0.185	0.185	0.185	0.185	0.185	0.185	0.185
E	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062
F	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021
G	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
н	0.000	0.000	0.000	0.000	0.000	0.000 N	с _{0.000}	0.000	0.000	0.000	0.000	0.000

	1	2	3	4	5	б	7	8	9	10	11	12
А	2.213	2.098	2.335	2.286	2.283	2.287	2.277	2.286	2.311	2.353	2.300	2.368
в	2.120	2.080	2.210	2.182	2.175	2.225	2.222	2.123	2.236	2.207	2.206	2.246
с	1.810	1.851	1.889	1.985	1.900	2.001	1.889	1.903	1.964	1.954	1.938	1.983
D	0.862	0.944	0.960	0.941	0.961	0.975	0.775	0.954	0.958	0.985	0.942	0.959
Е	0.277	0.288	0.301	0.285	0.315	0.316	0.318	0.288	0.302	0.296	0.294	0.281
F	0.153	0.163	0.155	0.167	0.131	0.173	0.175	0.162	0.161	0.157	0.162	0.162
G	0.136	0.149	0.139	0.140	0.146	0.145	0.143	0.140	0.135	0.144	0.141	0.139
н	0.130	0.135	0.134	0.144	0.136	0.136	0.140	0.142	0.137	0.136	0.160	0.131

Plate Map

Raw Data

File Edit Tables Rom		E Analyz
▼New Microsoft E ▷		Malaan
	▼ 1	Values 0.1304
	2	0.1348
	3	0.1338
Columns (1/1)	4	0.1442
٩	5	0.1362
🖌 Values	6	0.1364
	7	0.1402
	8	0.1424
	9	0.1368
C Davie	10	0.1357
Rows All rows 12	୍ <mark>କ ତ</mark> ୍ର ଲି 11	0.1597
Selected 1	12	0.1306
Excluded 1		
Hidden 1 Labeled 1		
Labeled		

Example

Sample

NC 📑 🟦 👧 🕫

Values

0.1304

0.1348

0.1338

0.1442

0.1362

0.1364

0.1402

0.1424

0.1368

0.1357

0.1597

0.1306

CV%

5.7

Conc

H1

H2 H3

Н4

H5

H6

H7

H8

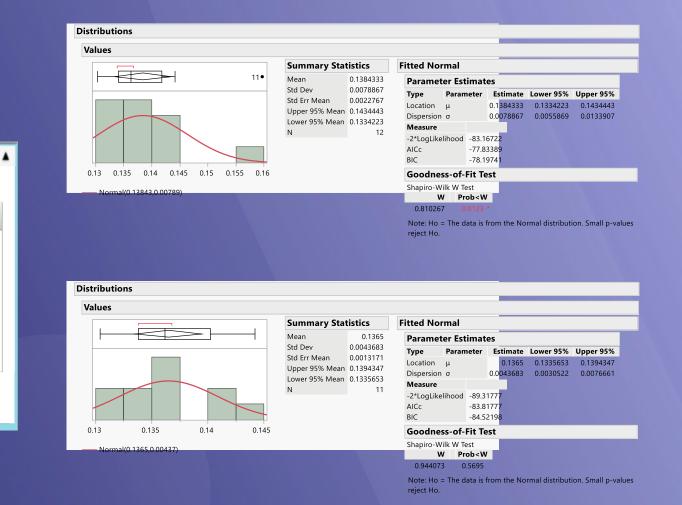
H9

H10

H11

H12

μg/mL


0.000

Well

01

Negative Control - One Outlier Detected

έσ

NC = 0.137 Shapiro-Wilk W test p-value before Outl = 0.0123 Shapiro-Wilk W test p-value after Outl = CoftMax Pro: ESDMarkOutliors(Values, Max # of Outliers, Significance)

NC

0.138

MeanValue

Std.Dev.

0.008

ValuesNO

0.1304

0.1348

0.1338

0.1442

0.1362

0.1364

0.1402

0.1424

0.1368

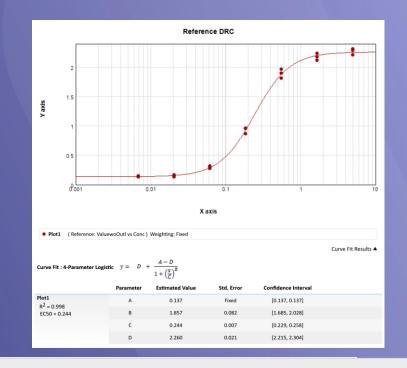
0.1357

Outlier

0.1306

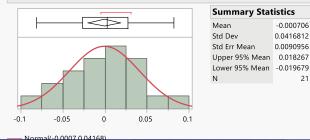
SoftMax Pro: ESDMarkOutliers(Values, Max # of Outliers , Significance)

SoftMax Pro "ShapiroWilkRoystonProbability(data)" function requires no less than 12 data points


JMP: Distribution, Outlier Box Plot

Reference DRC – no Outliers detected

Example	Refere	ence	1	fot	f@			
					Referei	nce		iq
Sample	Conc μg/mL	Wells	Values	CV%	FitValue	ValueResiduals	ValueResidOutl	ValuewoOutl
(5.000	A1 A5 A9	2.213 2.283 2.311	2.2	2.252	-0.039 0.031 0.059	-0.039 0.031 0.059	2.213 2.283 2.311
(1.667	B1 B5	2.120 2.175	2.6	2.202	-0.081 -0.026	-0.081 -0.026	2.120 2.175
(0.556	C5	2.236 1.810 1.900	4.1	1.881	0.034 -0.071 0.019	0.034 -0.071 0.019	2.236 1.810 1.900
	0.185	C9 D1 D5	1.964 0.862 0.961	6.1	0.933	0.082 -0.070 0.029	0.082 -0.070 0.029	1.964 0.862 0.961
	0.062	D9 E1 E5	0.958 0.277 0.315	6.6	0.290	0.025 -0.013 0.025	0.025 -0.013 0.025	0.958 0.277 0.315
	06 0.021	E9 F1 F5	0.153	10.2	0.158	0.012 -0.005 -0.026	0.012	0.302 0.153 0.131
	0.007	F9 G1	0.161 0.136	4.4	0.139	0.003	0.003	0.161 0.136
		G5 G9				0.007 -0.004	0.007 -0.004	0.146 0.135
D param	eters:		Nouti B paramet			031	2.4 o-Wilk W test p-value b	pefore Outl = 0.6288


	Noutl = 0	Outl = -0.039	MCV = 2.4
		0.031	
D parameters:	B parameters:	0.059	Shapiro-Wilk W test p-value before Outl = 0.6288
DReference = 2.26	b parameters:	-0.081	
DReference = 2.26	Breference = 1.857	-0.026	Shapiro-Wilk W test p-value after Outl = 0.6288
	bielelence = 1.657	0.034	
vDReference = 0.23	vBReference = 3.455	-0.071	
	VBReference = 5.455	0.019	
		0.082	
		-0.070	
		0.029	
		0.025	
		-0.013	
		0.025	
		0.012	
		-0.005	
		-0.026	
		0.003	
		-0.004	
		0.007	
		-0.004	

Distributions

ValueResiduals

mal

Parameter Estimates

Туре Parameter Estimate Lower 95% Upper 95% Location -0.019679 0.018267 ш 000706 0.0416812 0.0318886 0.0601906 Dispersion σ Measure -2*LogLikelihood -74.8681 AICc -70.2015 BIC -68.779

Goodness-of-Fit Test

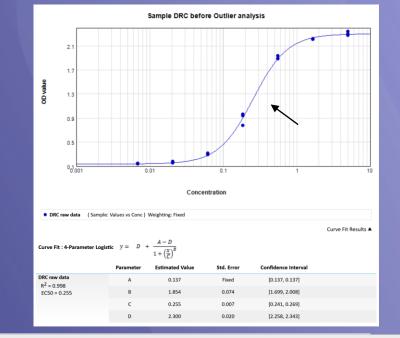
Shapiro-Wilk W Test W Prob<W

0.6288 0.965313

Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.

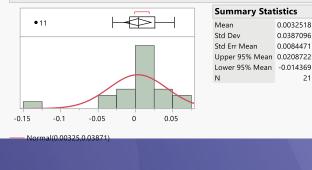
JMP: Distribution, Outlier Box Plot

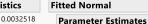
-0.000706


0.0416812

21

0.0090956


Sample DRC – One Outlier Detected


Ex	ample	Sampl	e 📑	111 fe	\$ 1 0	۹.						
							Sampl	le				100
	Sample	Conc µg/mL	Wells	Values	CV%	FitValue		ValueResiduals	s	ValueResidOutl	ValuewoOutl	
	01	1.07	A3 A7	2.335	1.3	-	2.292		0.044 0.015	0.044	2.335	
	02	1.667	A11 B3	2.300	0.4				0.008	0.008	2.300	
			B7 B11	2.222 2.206					0.014 0.030	-0.014 -0.030	2.222 2.206	
	03	0.556	C3 C7	1.889 1.889	1.5	1	1.888		0.001 0.002	0.001 0.002	1.889 1.889	
	04	0.185	C11 D3 D7	1.938 0.960 0.775	11.4	(0.907	(0.050 0.052 0.133	0.050 0.052 Outlier	1.938 0.960	
	05	0.062	D11 E3	0.942	4.0		0.282	(0.034	0.034	0.942	
			E7 E11	0.318				(0.036	0.036	0.318 0.294	
	06	0.021	F3 F7	0.155 0.175	6.0	(0.157		0.001 0.018	-0.001 0.018	0.155 0.175	
	07	0.007	F11 G3 G7	0.162 0.139 0.143	1.3	(0.139	(0.006 0.000 0.004	0.006 0.000 0.004	0.162 0.139 0.143	
			G11	0.143					0.004	0.004	0.145	
'	ChiSqdTotal = 0	df	fotal = 35	alpha = 0	.10 Nout	tl = 1	Outl =	= 0.044 -0.015		CV = 6.0		
1	SigmaSqd = 0 D paramet		1.690	D				0.008 -0.026 -0.014		apiro-Wilk W test p-va napiro-Wilk W test p-v		
	D paramet DSample2 = 2.2				mple2 = 1			-0.030 0.001		Chi-S	quared ptobability = 0	0.998
	rD = 0.983			rВ	= 1.031			0.002 0.050 0.052			F-test probability = 0	
	vDSample2 = 0. gD = 0.000	241			Sample2 = = 0.003	3.145		Outlier 0.034				
	hwD = 0.017			-	B = 0.084			0.018 0.036 0.012				
	rDCIUpper = 1.0	000			IUpper = 1			-0.001 0.018				
	rDCILower = 0.9	966		rBC	ILower = 0	.951		0.006 0.000 0.004 0.002			HasData = TRU	JE

Distributions

ValueResiduals

AICc

Parameter Estimate Lower 95% Upper 95% Type 0.0208722 Location µ -0.014369 Dispersion σ 0.0387096 0.0296151 0.0558993 Measure -2*LogLikelihood -77.9746

-73.3079

-71.8855 BIC Goodness-of-Fit Test

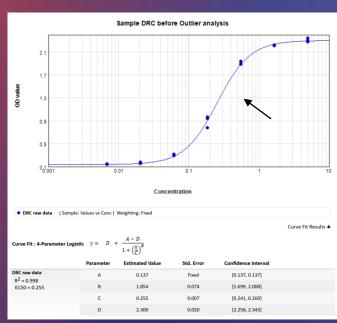
Shapiro-Wilk W Test

W Prob<W

0.799183

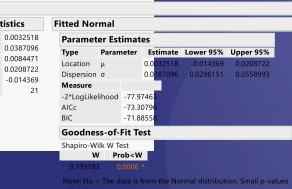
Note: Ho = The data is from the Normal distribution. Small p-values reiect Ho.

SoftMax Pro: ESDMarkOutliers(ValueResiduals, Max # of Outliers , Significance)


JMP: Distribution, Outlier Box Plot

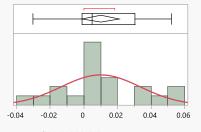
0.0387096

0.0084471


21

Sample DRC Independent Fits Before & After Outlier Exclusion

Distributions


ValueResiduals Summary Statistics <>>-•11 Mean Std Dev Std Err Mean 0.0084471 Upper 95% Mean 0.0208722 Lower 95% Mean -0.014369 N -0.15 -0.05 0.05 -0.1 0 al(0.00325.0.03871

Sample DRC after Outlier exclusion 8 Concentration DRC after removal of outliers (Sample: ValuewoOutl vs Conc) Weighting: Fixe Curve Fit Results 🔺 Curve Fit : 4-Parameter Logist Std. Error Confidence Interva DRC after removal of out [0.137, 0.137] 0.137 Fixed $R^2 = 1.000$ 1.801 0.034 [1.729, 1.872] EC50 = 0.2440 244 0.003 [0 237 0 251] [2.279.2.319] 2.299 0.009

Distributions

ValueResiduals

N

Mean

Std Dev

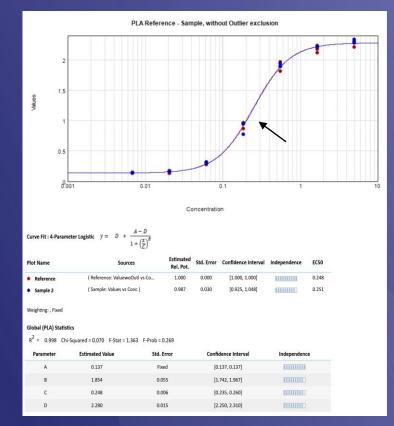
Lower 95% Mean -0.000948

-1/0 01000 0 00000

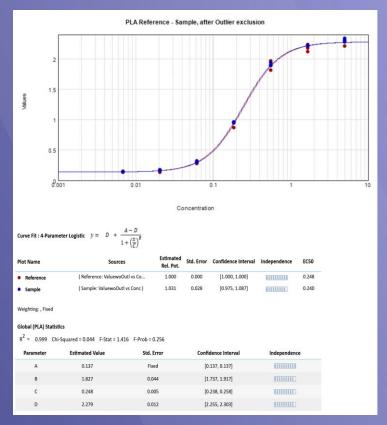
Summary Statistics Fitted Normal 0.0100588 Parameter Estimates 0.0235173 Std Err Mean 0.0052586 Upper 95% Mean 0.0210652

20

raramet	CI L3	mac	c3					
Туре	Paran	neter	Estin	nate	Lower 95%	Upper 95%		
Location	μ		0.0100	0588	-0.000948	0.0210652		
Dispersion	σ		0.023	5173	0.0178847	0.0343487		
Measure								
-2*LogLike	lihood	-94.24	4325					
AICc	AICc -89.							
BIC		-88.2	5179					
Goodnes	s-of-	Fit Te	st					
Shapiro-W	ilk W T	est						
w	/ Pr	ob <w< th=""><th></th><th></th><th></th><th></th></w<>						
0.950932	2 0	.3815						


Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.

Sample Relative Potency Estimates Before & After Exclusion of Outliers


Calculation of Relative Potency and RP Confidence Intervals based the ratios of EC50 (Parameter C) from Paired Global 4PL fits after Parallelism testing

Test for parallelism based on SoftMax Pro Fieller's Theorem protocol for Upper asymptotes (Parameter D) and Slopes (Parameter B) ratios from Independent 4PL Fits (the output of Fieller's theorem is the confidence interval for the ratio).

The suitability criteria for parallelism: the lower confidence limit must be > 0.8 and the upper confidence limit must be < 1.25, for both ratios.

Before: Relative Potency = 0.987 (98.7%)

After: Relative Potency = 1.031 (103.1%)

QUESTIONS?

Exa	imple		Syste	em S	uitabilit	y									▲
								Sys	tem Suitability						
	Plate	Group	R2:	R2	Max %CV	CV	Outliers	Parallelism	Relative Potency %	LL of C	UL of CI	Rel.Bias %	Accuracy		
	01	Reference				Pass	-								
		Control	0.999	Pass	2.4	Pass	1	Parallel	105	99	111	4.8	Pass		
	Acce	eptance Crit	teria:						'LL o	fCl'-Lo	wer Limit	of Relative A	Potency Co	nfidence Int	terval
		× CV < 25%							'UL c	of Cl' - U	pper Limit	of Relative i	Potency Co	nfidence Int	terval
		20.56 lative Bias	<30%												
-	_		_	_		-									
Exa	Imple		Sam	ple A	Accep	-	_	_		_	_	_	_	_	•
Exa	mple		Sam	ple A	Accep			_			_		_	_	
Exc	imple		Sam	ple A	Accep			Sample Ac	ceptance and Resul	ts	_		_		•
Ext		Sample			Accep	CV	Outliers		coeptance and Resul		UL of Cl				•
Exa	Plate	Sample 1	R2: 0.996	R2 Pass	Max %CV 6.0	Pass	0	Parallelism Parallel	Relative Potency %	LL of Cl 97	113				•
Exa	Plate		R2: 0.996	R2 Pass	Max %CV 6.0			Parallelism	Relative Potency %	LL of Cl					•
Exa	Plate 01	Sample 1	R2: 0.996 1.000	R2 Pass	Max %CV 6.0	Pass	0	Parallelism Parallel	Relative Potency % 105 103	LL of Cl 97 97	113 109	Relative Po	tency Confi	idence Inter	▲ val
Exa	Plate 01 <u>Acce</u> Max	Sample 1 Sample 2	R2: 0.996 1.000	R2 Pass	Max %CV 6.0	Pass	0	Parallelism Parallel	Relative Potency % 105 103 'LL of C	LL of Cl 97 97 21' - Low	113 109 er Limit of			idence Inter	

Acknowledgements

Michael Buonarati Gabi Rivera Cassandra Berta Muyeng Tang Gerardo Velarde

www.Abzena.com