

Extracellular Targeted Protein Degradation: An Emerging Therapeutic Modality

Thomas Smith, Ph.D., Novartis Institutes for Biomedical Research 2nd Next-Generation Conjugates Summit, Boston, MA, USA February 23, 2023 NOVARTIS

Reimagining Medicine

Declaration of Interests

The presenter is a current employee of the Novartis Institutes for BioMedical Research (NIBR), and is co-author of a published manuscript and inventor on patent applications, all related to this work

See Bagdanoff et al., 2023, Cell Chemical Biology 30, 1–13. January 19, 2023

Jeffrey T. Bagdanoft Thomas M. Smith, Martin Allan,

John W. Blankenship, David Barnes-Seemar Kevin B. Clairmont infrey backanof@novartis.com (J.T.B. thomasm.smith@novartis.com (T.M.S.) kevin clairmont@ metrobiotech.com (K.B.C.) Bagdanoff et al. describ neterobifunctional molecules that mortiste in vien clearance of the nathologically relevant plasma protei PCSK9 in mice, demonstrating rapid, ASGPR-dependent clearance using multiple classes of heterobilund constructs including bispecific antibodies, antibody-drug conjugates

and small molecules

CelPress

NOVARTIS |

Reimagining Medicine

2 2nd Next-Generation Conjugates Summit | Boston, MA | February 21-23 2023 | Business Use Only

Novartis Institutes for BioMedical Research

Addressing unmet medical need with our Disease Areas, Institutes, Enabling Platforms

Degradation of Extracellular Protein Targets

Adapted from Ruffilli et al., Proteolysis Targeting Chimeras (PROTACs): A Perspective on Integral Membrane Protein Degradation. ACS Pharmacol. Transl. Sci. 2022, 5, 10, 849–858.

Targeted Plasma Protein Degradation (TPPD)

Extracellular degraders tackle cell surface membrane and soluble plasma targets

Ideal TPPD receptors will:

- Deliver target to endolysosomal system
- Not be degraded along with target
- Recycle constitutively and rapidly
- Have high capacity to internalize target
- Have low safety concern with reduced capacity (inhibition benign)

The Asialoglycoprotein Receptor (ASGPR)

A high density, rapidly internalizing scavenger receptor of the liver

Das, S. et al. Asialoglycoprotein receptor and targeting strategies in "Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis", Springer 2019

6 2nd Next-Generation Conjugates Summit | Boston, MA | February 21-23 2023 | Business Use Only

Searching For The Best Therapeutic Applications *Diseases driven by soluble circulating factors*

Cholesterol Levels Are One Of The Primary Risk Factors For Development Of Atherosclerosis & CVD

Tsao CW, et al. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022 Feb 22;145(8):e153-e639

Genetics, Lifestyle, And Diet All Play A Role In CVD

The REAL reason dinosaurs became extinct

The Role Of PCSK9 In Modulating LDL Levels

Statins, along with diet and exercise, are often not enough for many patients to reach their recommended LDL target level.

Schlegel V, et al. Low PCSK9 levels are correlated with mortality in patients with end-stage liver disease. PLoS One. 2017 Jul 20;12(7):e0181540.

10 2nd Next-Generation Conjugates Summit | Boston, MA | February 21-23 2023 | Business Use Only

11 2nd Next-Generation Conjugates Summit | Boston, MA | February 21-23 2023 | Business Use Only **Reimagining Medicine**

Design Principles of Extracellular Degraders

A modular bifunctional design enables access to diverse extracellular target space

Towards An Extracellular PCSK9 Degrader

- Synthesize and characterize bifunctional ligands
- Validate bifunctional binding
- Assess cellular uptake
- Evaluate PCSK9 target clearance in vivo

```
TARGET
         -LINKER-
=
  Compound 1
```

GalNAc trimer

PCSK9

Reimagining Medicine

Compound 15 NOVARTIS

13 2nd Next-Generation Conjugates Summit | Boston, MA | February 21-23 2023 | Business Use Only

Compound 10 Synthesis

Compound 10 Characterization

A. Size exclusion chromatogram (λ = 280 nm) for triGalNAc-PCSK9 Ab (10) (blue trace); Dulbecco's PBS, pH 7.0 blank (black trace).

B. Analytical Summary for triGalNAc-PCSK9 Ab (10)

Analysis	Results
Appearance	Clear solution
DAR variants (LC-MS)	DAR 3: 5%
	DAR 4: 95%
	Average DAR: 4.0
% Purity (SEC)	94.9% monomeric
Endotoxin (EU/mg)	0.22
Concentration (UV)	8.3 mg/mL
Amount (by UV Analysis)	9.9 mg
Average MW	155,680 Da

Compound quality and integrity are paramount for further studies

Biophysical Validation Of Bifunctionals Inter- Receptor

Surface Plasmon Resonance (SPR) Receptor Target Avi-Target immobilized on streptavidin chip Sensorgram (SPR results) [Bifunctional] 300 e - 250nM - 125nM 62.50nM Response (RU) 200 - 31.25nM - 15.63nM 100 - 0nM -100 100 200 300 500 Time (s)

Towards An Extracellular PCSK9 Degrader

TARGET

LIGAND

=

-LINKER-

- Synthesize and characterize bifunctional ligands
- Validate bifunctional binding
- Assess cellular uptake
- Evaluate PCSK9 target clearance in vivo

Compound 1

PCSK9

 $K_D = 4 nM$

Reimagining Medicine

17 2nd Next-Generation Conjugates Summit | Boston, MA | February 21-23 2023 | Business Use Only

GalNAc trimer

ASGPR K_D ~ 3 nM

Cellular Validation Of Bifunctionals

Target	(Limber w)	Receptor
Ligand		Ligand

18 2nd Next-Generation Conjugates Summit | Boston, MA | February 21-23 2023 | Business Use Only

Towards An Extracellular PCSK9 Degrader

- Synthesize and characterize bifunctional ligands
- Validate bifunctional binding
- Assess cellular uptake
- Evaluate PCSK9 target clearance

NOVARTIS

Reimagining Medicine

19 2nd Next-Generation Conjugates Summit | Boston, MA | February 21-23 2023 | Business Use Only

In Vivo Assessment Of Bifunctionals

Target	Linker	Receptor
Ligand	Linker	Ligand

Towards An Extracellular PCSK9 Degrader

- Synthesize and characterize bifunctional ligands
- Validate bifunctional binding
- Assess cellular uptake
- Evaluate PCSK9 target clearance in vivo

Challenge: PCSK9 clearance is largely through liver low density lipoprotein receptor (LDLR)

LDLR KO Animals Provide A Better Window To Detect Facilitated Clearance Of PCSK9

GalNac Trimer - Fluor is Rapidly Delivered to LDLR (-/-) Mouse Liver

23 2nd Next-Generation Conjugates Summit | Boston, MA | February 21-23 2023 | Business Use Only

Plasma PCSK9 Clearance is Achieved ABZENA With Antibody-Based Bifunctionals

Bifunctional Antibody ASGPR Ab - PCSK9 Ab ASGPR PCSK9 Compound 5 1:1 bifunctional:PCSK9 @ 0.22 mg/kg 3000human PCSK9 (ng/mL) 300ehicle ***** 0.3 mp ***** 1.0 mp 30-60 120 180 240 Time (min)

GalNAc trimer – Antibody [GalNAc]₃ – PCSK9 Ab

24 2nd Next-Generation Conjugates Summit | Boston, MA | February 21-23 2023 | Business Use Only

Plasma PCSK9 Clearance is Achieved With "LMW"-Based Bifunctionals

Compound 15 (mg/kg)	PCSK9 Concentration (pM) at T = 120 min	p vs. Vehicle	∆% vs. Vehicle
→ 0	2513	-	
→ 0.01	1160	0.0376	-54
··••· 0.1	417	0.0049	-83
▲ 0.3	684	0.0118	-73
+ 1	636	0.0097	-78
- 3	748	0.0071	-70

UNOVARTIS | Reimagining Medicine

25 2nd Next-Generation Conjugates Summit | Boston, MA | February 21-23 2023 | Business Use Only

Plasma PCSK9 Clearance Does Not Occur with Only Target Ligand Or Receptor Ligand

Plasma PCSK9 Clearance Is Inhibited By Excess Target Ligand Or Receptor Ligand

Monofunctional ligands will compete with bifunctional ligands to inhibit clearance.

In Conclusion

- Extracellular targeted protein degradation (eTPD)
 - Emerging approach for tackling membrane and soluble targets
- ASGPR
 - High-density, high-capacity shuttle to endolysosomal system
- Bifunctional compounds to ASGPR and PCSK9 feasible: *quality is paramount*
- Circulating PCSK9 cleared *in vivo* in mice by
 - bispecific antibodies
 - antibody conjugates
 - small molecules

TPPD Team Members and Key Contributors

CVM

Kevin Clairmont Kevin Bean Meg Brousseau Shari Caplan Pam Grewal Alex Koch Jen Lussier Peter O'Donnell Meihui Pan Leeann Schreier Vanitha Subramanian Victoria Vera Gerry Waters Jian Xu Qing Yang

NBC / ASI

John Blankenship Regis Cebe Christina Dornelas Tony Fleming Brian Granda Thomas Huber Ned Kirkpatrick Alexandra Lavoisier Crystal Shih Bruno Tigani Elisabetta Traggiai William Tschantz

RD

Tim Benson Katherine Mccauley David Rowlands

<u>GDC</u>

Jeff Bagdanoff Martin Allan Frederic Berst Chris Brain Dirk Bussiere Gregor Cremosnik Stefanie Flohr Ralf Glatthar Rene Hersperger Peter Meier Lauren Monovich Kenii Namoto Elizabeth Ornelas Dominik Pistorius (NPU) Esther Schmitt (NPU) Alok Sinah Thomas Vorherr

<u>ATI</u>

Frederic Bornancin Dominik Buser Thomas Calzascia Isabelle Isnardi Gautier Robert James Rush Richard Siegel Helmut Sparrer Max Warncke

<u>DAx</u>

Amy Berwick Paola Capodieci Bill Dietrich Betsy George Sue Stevenson

CBT

Thomas Smith Rishi Arora Jason Baird Fred Bassilana Steve Canham Dominick Casalena Chun-Hao Chiu Raj Chopra Feng Cong Christoph Dumelin William Forrester Gabe Gamber Celia Mendez Garcia Matt Gerding Patrick Hauck Uli Hommel Srinivas Honnappa Dan King Lukas Leder Bo Lu Sue Menon Zachary Nguyen Johannes Ottl Josh Paulk Nicole Renaud Michael Romanowski Jonas Schaefer Philip Skaanderup Claudio Thoma Shuangxi Wang Jonathan Whicher Christian Wiesmann Mikias Woldegiorgis Lili Xie

Genesis Labs

Michael Chaffers Sarah Cooper Ian Hunt Kathleen Kellogg Aimee Reynolds

Scientific Advisory Board

Richard MacDonald University of Nebraska Natalie Dales (GDC) Lloyd Klickstein (TM) John Tallarico (CBT)

PK Sciences

Ann Brown David Nettleton Dan Wall

TPPD Innovation Postdoc

Elizabeth Moore

Drug Prototypes Committee

Rohan Beckwith Kirk Clark Rishi Jain Lynn McGregor Folkert Reck Nicole Renaud Isabel Zaror

NIBR Leadership

Jay Bradner Christian Bruns Karin Briner Shaun Coughlin Vishal Patel Thomas Pietzonka Jeff Porter John Tallarico

Legal

Jana Harris Linyu Mitra Dan Raymond Wei Zhang

Procurement

Joe Carvalho Benoit Collin Ellen Crawford

External

Lani Peterson, STORY Aurigene CEPiA Sanofi GeneArt LakePharma Proteros Biostructures GmbH Abzena UK Ltd. Special thanks to: Nicolas Camper, Brian Dwyer, Mark Frigerio, Ali Kazzaz, Joao Nunes, and Christopher White

UNOVARTIS | Reimagining Medicine

29 2nd Next-Generation Conjugates Summit | Boston, MA | February 21-23 2023 | Business Use Only

YXXYXXXXX YYYYYYYYY **YXXXXXXXX** YYYYYYYYY **XXXXXXXXXX** YYYYYYYYY **XXXXXXXXXX YXXXXXXXX** YYXYYXYYY **YXXYXXXXX** YYXYYXYYY **XXXXXXXXXX** YYXYYXYYY **XXXXXXXXXX** \mathbf{x} **YXXYXXXXX** \mathbf{X} **YXXYXXXXX** YYYYYYYYY **XYXXYXXXX YYYYYYYY XXXXXXXXXX** YYXYYXYYY YXXYXXXYY YXXYXXXYX **XXXXXXXXXX** YYYYYYYYYY**YXXYXXXXX TTTTTTT YXXXXXXXX XXXXXXXXXX** YYYYYYYYY **XXXXXXXXXX** YYYYYYYYYY**XXXXXXXXXX** YYXYYXYYY **YXXYXXXXX** YYXYYXYYY **YXXYXXXXX** YYYYYYYYY YYYYYYYYY **XXXXXXXXXX** YYYYYYYYY

Thank you

Harnessing ASGPR-Dependent Degradation

Pioneering efforts in this space date back > 35 years

liver 20/0 serum 10 100 20/120/200 dose 80 8 of injected dose Gal OCH₂ 20/5 of injected н 0 60 60 20/13 Gal OCH-C 20/13 40 Gal OCH₂ Diagram I. The structure of Tris-Gal-Chol. 20-20 20/200 15 15 30 30 5 Time (min)

Effect of Tris-Gal-Chol on the liver association and serum decay of ¹²⁵I-LDL

NOVARTIS

Reimagining Medicine

 "It is concluded that Tris-Gal-Chol incorporation into LDL leads to a markedly increased catabolism of LDL by the liver which might be used for lowering serum LDL levels." TJ van Berkel et al., 1985 (PMID: 2579071)